
Lydia Chilton
7 April 2025

Bridging Design and 
Code with Gen AI 



AI Code generation has transformed the way programmers 
work.



Design
(What do we build?) 

Engineering
(How do we build it?) 



Two Software Design Processes

Feedforward Feedback



The Waterfall Model

Product

Requirements

Design

Implement

Fix bugs

Ship it

• One button
• Touch screen
• Soft 

keyboard

Idea

5



The Waterfall Model: What could go wrong?

Product

Requirements

Design

Implement

Fix bugs

Ship it

• One button
• Touch screen
• Soft 

keyboard

Idea

6

What if a touch 
screen can’t be 
implemented?

What if this 
device is so 
slow it’s 
unusable?

How can we keep 
up with the 
competition?

What if the 
hardware 
weighs 30 lbs?

It becomes a feedback process anyway!



Iterative Design is a feedback loop.

7

Idea Product



Each feature needs to be iterated before moving on

8Idea Product

Touch screen Soft keyboard One button



Understand the problem Solve the problem

Ideas

Person with 
a challenge

Product

Human-Centered Design: Two feedback loops

Observe

Hypothesize

Test



AI Code generation isn’t enough to 
create better software products…

We have to close feedback loops 
between design and engineering.



Feedback loops are essential to all systems

The human body Earth systems Training AI

Education Childhood Development



Bridging Design and Code with Gen AI
Dynex 

○ Iterative Problem Specification 
○ Iterative Development 

Testing: 
User simulation 

Code
Design:
Policy 
updating

Testing: 
Self-Debugging

Design:
Code Editing 
Widgets

Code LogoMotion
○ Self-debugging loop
○ Iteration with AI Editing widgets

Double Agents 
○ Testing with user simulation 
○ Iterating on designs with AI 

suggestions

Design Code



Bridging Design and Code with Gen AI
Dynex 

○ Iterative Problem Specification 
○ Iterative Development 

Testing: 
User simulation 

Code
Design:
Policy 
updating

Testing: 
Self-Debugging

Design:
Code Editing 
Widgets

Code LogoMotion
○ Self-debugging loop
○ Iteration with AI Editing widgets

Double Agents 
○ Testing with user simulation 
○ Iterating on designs with AI 

suggestions

Design Code



DynEx: Agentic Assistance to Bridge Design and Code

Jenny Ma, Karthik Sreedhar, Vivian Liu, Pedro Alejandro Perez, Sitong Wang, Riya Sahni, 
Lydia B. Chilton
CHI 2025



Everyone wants Agents to Develop Software

How we build Artifacts in Claude (8/2024)
https://www.youtube.com/watch?v=vUdNaAAc4FYSWE-Bench (11/2024)

https://arxiv.org/pdf/2407.16741



Can Agents do it by themselves? NO!



Why do we need human interaction?

● Specify the problem and the 
solution

● Iteratively test modular pieces (or 
prototypes) so errors don’t 
compound.

○ Every problem has unknown aspects of 
the environment where it will operate.

○ We have to expect to find new 
problems.

We need to bridge design and implementation



idea solution

There is a gap in going from an idea to a working solution



We need to specific the problem! Who is the user?

idea solution

Who is the target user?



We need to specific the problem! What is the approach?

idea solution

Who is the target user?

What is the approach?



We need to specific the problem! What is the interaction paradigm?

idea solution

Who is the target user?

What is the approach?

What interactions should it allow?



Design Exploration Implementation +



Design Exploration Implementation +



Person

Idea

Grounding

Design Matrix: Help users specify the user, approach, and 
interaction paradigm.

Approach Interaction

Dimensions 

Levels of specificity 

Person:Idea Approach:Idea Interaction:Idea

Person:Grounding Approach:Grounding Interaction:Grounding



The Design Matrix uses Gen AI to suggest ideas and 
grounding with respect to the other ideas/groundings



Table

User Interaction Paradigms



Card SwipeTable

User Interaction Paradigms



Card SwipeTable News Feed

User Interaction Paradigms



Card SwipeTable ChatbotNews Feed

User Interaction Paradigms



Design Exploration Implementation +



Design Requirement Agent



Dynamic Iterative Implementation Agents



Iterative Development with Step-by-Step Implementation



System breaks down implementation 
plan into steps and generates code for 

each step

Modular Step-by-step Implementation



System breaks down implementation 
plan into steps and generates code for 

each step

Modular Step-by-step Implementation

Users can add, remove, and update steps. 
Steps provide a natural form of version 

control. 



Self-Invoking LLMs



Self-Invoking Multi-Modal LLMs

Generative AI APIs are 
powerful and versatile, 
and excel at handling a 
wide variety of tasks. 

Our generated code can call 
GPT to generate dynamic 
data and create images. 

We can create more 
realistic applications that 

can more accurately mimic 
a user’s experience



Examples



Movie recommendations 
(and images) are made by 
calling GPT within the app 
to generate the related 
movies dynamically



Book recommendations, 
images, and summaries 
are made by calling GPT 
within the app dynamically



Clustering of notes 
is done dynamically 
with GPT



User Evaluation Research Questions

RQ1: [Divergence] To what extent does DynEx enable divergent exploration within 
a problem space?

RQ2: [Convergence] To what extent does DynEx allow users to better develop 
their ideas?

RQ3: [Implementation] To what extent does DynEx enable the code to realize a 
complex idea?

RQ4: [Overall] To what extent does DynEx allow for a better prototyping 
experience? 





Results

● DynEx inspired new solutions, allowed users to explore a problem space, 
and further developed users ideas (p=0.05 level).

● DynEx enables users to create more complex, feature-rich, and intuitive 
applications that emulate a true user experience (p=0.05 level)



P6 - Friend-Activity-Joining Application

"[DynEx] suggested many features… such as how to match people with friends, how to visualize 
the friend-sharing [component], how to [join a friend’s] friend experiences, how to share 

experiences with friends.. it created a pretty robust social ecosystem surrounding the calendar 
experience."

"[DynEx] incorporated really different, very distinct UI features that weren’t very connected to each other at 
[face value] really well”



P8 - Concert Ticket Aggregator

“It was intuitive. It was feature-rich. It had all the important features, like sorting by columns and 
sorting by genre, value for money, etc… I liked the conciseness of the information… contrary to 

[Claude Artifact’s] prototype which was… not-fit for this use case”



Dynex: Bridging Design and Code

Iterative Problem 
Specification (Design)

●

Modular Code Generation 
and Testing



Bridging Design and Code with Gen AI
Dynex 

○ Iterative Problem Specification 
○ Iterative Development 

Testing: 
User simulation 

Code
Design:
Policy 
updating

Testing: 
Self-Debugging

Design:
Code Editing 
Widgets

Code LogoMotion
○ Self-debugging loop
○ Iteration with AI Editing widgets

Double Agents 
○ Testing with user simulation 
○ Iterating on designs with AI 

suggestions

Design Code



LogoMotion: Visually Grounded Code Generation and Repair

Vivian Liu, Rubaiat Habib Kazi, Li-Yi Wei, Matthew Fisher, Timothy Langlois, Seth Walker, Lydia Chilton. 
LogoMotion: Visually Grounded Code Generation for Content-Aware Animation. CHI 2025.

https://arxiv.org/abs/2405.07065


Creating semantically meaningful motion is hard.

Cars should drive Fans should spin UFOs should take off



Animation UIs are complex



Templates are too rigid



Human-agent interaction for animation
gives users control and freedom

INPUT
PDF

OUTPUT
HTML PAGE  ANIMATION CODE

INPUT
PDF

OUTPUT
HTML PAGE  ANIMATION CODE



Agents can automatically author an animation



Agents can automatically debug and repair animations



Agents Generate a UI for Editing the Animation



Agents visual understand the input.

57



Agents label the parts of the input

58



Agents represent the input as HTML

59



60

Augment the HTML with visual analysis 
Primary, secondary visuals, text, background, etc)



Agents suggest a design concept.

61



62

Agents implements animation code.



Agents can also detect a fix animation errors

OUTPUT WITH ERROR SELFDEBUGGED OUTPUT

63



Self-debugging agents check for errors. 

64



Self-debugging agents check for errors. 

65



Self-debugging agents check for errors. 

66



Agents activate an editing UI for users to improve 
animations or explore new ones.



A timeline widget can reorder animation blocks and 
adjust timing



Users could select 

https://docs.google.com/file/d/1lWjYlJeR6qF4ZXr6NEOB8TMgfemkZeWL/preview


https://docs.google.com/file/d/17lVCfPZzclwNDj_UPueInwks2lhdCeGT/preview


A grouping widget can synchronize 
motion and timing of elements

STAGE 3  CODECONNECTED WIDGETS FOR EDITING



Show a regrouping

https://docs.google.com/file/d/17JC8SeE3SVRUboF27lvypfqBhWXGtNd5/preview


https://docs.google.com/file/d/1SmoUesN5jaKfNyvrIEewh6xLPSdskauA/preview


A version tree allows users to 
review and select animations.



Animation Agents produce semantically 
meaningful animations. 

LOGOMOTION OUTPUTS

75



Program Repair Enables a 95% Solve Rate.
EVALUATION PROGRAM REPAIR

76



Editing Agents helped users explore more animations 
and craft better iterations than a baseline.

EVALUATION 3 ANIMATION EDITING



“Itʼs really cool especially for someone who couldnʼt do it without this 
tool and wouldnʼt spend a lot of time with Youtube videos or tutorials 
to do the very basics.ˮ  P2



LogoMotion induces feedback with:
1. Self Debugging
2. Code Editing Widgets

Testing: 
Self-Debugging

Design:
Code Editing 
Widgets

Code



Bridging Design and Code with Gen AI
Dynex 

○ Iterative Problem Specification 
○ Iterative Development 

Testing: 
User simulation 

Code
Design:
Policy 
updating

Testing: 
Self-Debugging

Design:
Code Editing 
Widgets

Code LogoMotion
○ Self-debugging loop
○ Iteration with AI Editing widgets

Double Agents 
○ Testing with user simulation 
○ Iterating on designs with AI 

suggestions

Design Code



AI Agents for Task Completion and Human Simulation

Double    

Tao Long, Xuanming Zhang, Sitong Wang, Jenny Ma, Karthik Sreedhar, Lydia B. Chilton
Double Agents. AI Agents for Task Completion and Human Simulation.
In preparation.

Agents

Karthik Sreedhar, Alice Cai, Jenny Ma, Jeffrey V. Nickerson, Lydia B. Chilton.
Simulating Cooperative Prosocial Behavior with Multi-Agent LLMs: Evidence and Mechanisms for AI Agents to Inform Policy Decisions.
IUI 2025.



Several Studies have shown that AI can accurately replicate human behavior

It replicates published studies of 
economic games

And 80% of of 70+ published and 
unpublished psychology games



Agents who “Observe”, “Think” and Act 
can engage in “realistic” human activity, like organizing a party.



We use AI to accurately simulate 
complex behavior outside of the lab



Classroom Simulation

There is one professor and 3 students:

The professor announces one of three late policies to the class ahead of a simulation: 
(1) harsh

2) some leniency
(3) very lenient



Classroom Simulation

There is one professor and 3 students:

Students are assigned one of three “personality” traits.

Overachiever Procrastinator

“Work-Life-Balance”



Classroom Simulation

There is one professor and 3 students:

Professors assign weekly homework, 
students work on it and turn it in.



Classroom Simulation

There is one professor and 3 students:

We also add stressors to the simulation to see what affects it has on behavior.

A Challenging Assignment

An Unrelated Midterm



There is one professor and 3 students:

Professor’s Office

Classroom Simulation

Students can enter the office to speak to or ask the professor questions.

 Classroom  Workroom



There is one professor and 3 students:

Professor’s Office

When we add stressors, we see behaviors consistent with real students

1) Cheating. Procrastinators ask overachievers if they can “look at their 
homework” 

2) Students email the professor pleading for extensions.

 Classroom  Workroom

Can I look at your 
homework…



Since AI can simulate human behavior inside and outside the lab, 
it can provide human feedback to test software systems!



AI Agents for Task Completion and Human Simulation

Lydia Chilton
Columbia AI Summit, AI in Business

Double    Agents



Human Coordination Problems (HCPs).

Warehouse.

Resource discovery.

Constraints. Availability.

Priority-based allocation. 

Dynamic scheduling. 

Optimization. Bipartite matching. 

Real-time adjustments.

Uncertainty & adaptability



Tool / API / function calling to take actions.

GPT Operator / Claude Computer Use.

Orchestration

Workflow automation, task execution.

Human-in-the-loop systems & interfaces.

Action planning, execution, replanning…

LLMs Agents drive real-world impact by taking action.



DoubleAgents uses agents in a 
feedback loop to solve HCPs.

Simulations Evaluate Solutions
● Test the planner for multiple scenarios of 

human available.
● Vary human communication styles, 

responsiveness, etc.

Agents design policies for 
● Assigning work fairly 
● Negotiating with workers’ availability

Agents Implement
● Work Assignments
● Including contacting workers for 

availability questions and 
negotiation.

AI suggests 
revised policies 
when tests fail.

A human planner 
must approve new 
policies.



Example scenario: 
Speaker scheduling for research seminars.



1:1 relationships (A speaker can only speak at 1 seminar slot.)

Availability constraints, preferences, and priority availability

Varied response times (some people never respond, some reply instantly)

Extensive email communication (confirmation, request for additional availability, 
etc)

Multi-thread tracking email and sequential email follow-ups

Example scenario: 
Speaker scheduling for research seminars.



📅    3 slots🎤   3 speakers
Example:

Example scenario: 
Speaker scheduling for research seminars.

M A Y

1
M A Y

2
M A Y

3

Kostis

Lydia Eugene
How should we 

allocate speakers to slots?

As an organizer:

What information / constraints 
should we consider during allocation?



🎤   3 speakers

A

B

C

SLOT

1
SLOT

2
SLOT

3

📅    3 slots

Speaker A

Speaker B

Speaker C

Slot 1

Slot 2

Slot 3



🎤   3 speakers

A

B

C

SLOT

1
SLOT

2
SLOT

3

📅    3 slots

Speaker A

Speaker B

Speaker C

Slot 1

Slot 2

Slot 3

What’s your 
availability 
for Slots 1, 
2, or 3?



🟩 Easy Case: No conflicted availability

SLOT

1
SLOT

2
SLOT

3

📅    3 slots

Slot 1

🎤   3 speakers

A

B

C

Slot 2

Slot 3

Speaker A

Speaker B

Speaker C



📅    3 slots

BB

C

A

🎤   3 speakers

SLOT

1
SLOT

2
SLOT

3

Speaker A

Speaker B

Speaker C

Slot 1

Slot 2

Slot 3

“ I now prefer coming    
     on Slot 1. ”

“ I’m available for 
     all three slots! ”

“ I can come on either 
      Slot 1 or Slot 2. ”

🟩 Easy Case: No conflicted availability

A

B

C

A

B C

B C

Allocating…Allocation Done ✅



📅    3 slots

“ I can come on either 
      Slot 1 or Slot 2. ” B

A

🎤   3 speakers

SLOT

1
SLOT

2
SLOT

3

Speaker A

Speaker B

Speaker C

Slot 1

Slot 2

Slot 3

“ I now prefer coming    
     on Slot 1. ”

“ I’m available for 
     all three slots! ”

“ I can come on either 
      Slot 1 or Slot 2. ”

🟨 Medium Case: Conflicted availability

A

B

C

B

B C

Allocating…

“ I can come on either 
      Slot 1 or Slot 2. ”

Allocating Failed ❌

C



“ I can come on either 
      Slot 1 or Slot 2. ” B

A

📅    3 slots🎤   3 speakers

SLOT

1
SLOT

2
SLOT

3

Speaker A

Speaker B

Speaker C

Slot 1

Slot 2

Slot 3

“ I now prefer coming    
     on Slot 1. ”

“ I’m available for 
     all three slots! ”

“ I can come on either 
      Slot 1 or Slot 2. ”

🟨 Medium Case: Conflicted availability - must update policies

A

B

C

B

B C

“ I can come on either 
      Slot 1 or Slot 2. ”

Speaker B cannot take 
both Slots 2 and 3. 

Thus, we need to ask Speaker A or C 
for additional availability —

so one of them can take Slot 2 or 3 with B.

B

Allocating Failed ❌

Hey A! We have a 
conflict. Can you 
do Slot 2 or 3 by 
any chance?

Speaker A

“ I now prefer coming    
     on Slot 1. ”

In our model, speakers' first-round disclosure of 
availability reflects their preferred slots. 

We may resolve conflicts by asking for their 
additional alternative availability.



B

A

📅    3 slots🎤   3 speakers

SLOT

1
SLOT

2
SLOT

3

Speaker A

Speaker B

Speaker C

Slot 1

Slot 2

Slot 3

“ I now prefer coming    
     on Slot 1. ”

“ I’m available for 
     all three slots! ”

🟨 Medium Case: Conflicted availability - must update policies

A

B

C

B

B C

“ I can come on Slot 1. ” 

“ I see, don't worry! 
I can do Slot 3 if that 
works better for you.”

A

📧 Email Reply Received! Allocating…Allocation Done ✅

C

B

A



Gather Speakers’ (New) Availabilities

START

END

Result — 1:1 Speaker-Slot Allocation

Solver

TRUE

FALSE
Check if 1:1 

Match is Perfect

Plan who to reach 
out to and ask

Execution Agent: HCP Solver 

Gather Speaker Availabilities

Design (Policies):

● The solver can 
reach out to 
speakers again 
to ask for 
additional 
availability.



🟥 Repeat for harder test cases to discover more 
policies (designs) needed for real world deployment.

1. Workers don’t have enough 
availability. 

2. Workers who don’t respond 
to emails 

● How many times is it okay to ask 
workers for more availability?

● How long should you wait to 
nudge?

● How many nudges should you do 
without a response?

● How you you balancing assigning 
dates to prompt responders 
versus hounding non-responders?

Simulated test cases Policies to establish



DoubleAgents can solve all test cases, following new 
policies

easy:
no conflicts

med:
little conflicts

hard:
a lot of conflicts

# additional availability-seeking rounds need to solve 0.00 1.67 3.38

Is the allocation ideal? The final allocation matches at least 1 
agent's first preferred availability 100% 100% 100%

Is the allocation *very* ideal? The final allocation matches at 
least 2 agents' first preferred availability 100% 55.56% 37.50%

Is the allocation **super** ideal? The final allocation matchesat 
least 3 agents' first preferred availability 100% 0% 0%

How can we rate "ideal"? If we give "satisfy first availability" 5 
points and "satisfy second availability" 1 point.

average score 15.00 9.22 8.75

🟩 Easy:
No conflicts 

🟨 Medium:
Few conflicts

🟥 Hard:
Lots of conflicts

Is the allocation correct?
The final speaker-slot allocation
matches speakers agents’ availabilities.

100% 100% 100%

# rounds of plan execution needed for 
achieving a perfect allocation

0 1.67 3.38



DoubleAgents can solve all test cases, following new 
policies

easy:
no conflicts

med:
little conflicts

hard:
a lot of conflicts

# additional availability-seeking rounds need to solve 0.00 1.67 3.38

Is the allocation ideal? The final allocation matches at least 1 
agent's first preferred availability 100% 100% 100%

Is the allocation *very* ideal? The final allocation matches at 
least 2 agents' first preferred availability 100% 55.56% 37.50%

Is the allocation **super** ideal? The final allocation matchesat 
least 3 agents' first preferred availability 100% 0% 0%

How can we rate "ideal"? If we give "satisfy first availability" 5 
points and "satisfy second availability" 1 point.

average score 15.00 9.22 8.75

🟩 Easy:
No conflicts 

🟨 Medium:
Few conflicts

🟥 Hard:
Lots of conflicts

Is the allocation correct?
The final speaker-slot allocation
matches speakers agents’ availabilities.

100% 100% 100%

# rounds of plan execution needed for 
achieving a perfect allocation

0 1.67 3.38



DoubleAgents uses agents in a 
feedback loop to solve HCPs.

Simulations Evaluate Solutions
● Test the planner for multiple scenarios of 

human available.
● Vary human communication styles, 

responsiveness, etc.

Agents design policies for 
● Assigning work fairly 
● Negotiating with workers’ availability

Agents Implement
● Work Assignments
● Including contacting workers for 

availability questions and 
negotiation.

AI suggests 
revised policies 
when tests fail.

A human planner 
must approve new 
policies.



Bridging Design and Code with Gen AI
Dynex 

○ Iterative Problem Specification 
○ Iterative Development 

Testing: 
User simulation 

Code
Design:
Policy 
updating

Testing: 
Self-Debugging

Design:
Code Editing 
Widgets

Code LogoMotion
○ Self-debugging loop
○ Iteration with AI Editing widgets

Double Agents 
○ Testing with user simulation 
○ Iterating on designs with AI 

suggestions

Design Code



AI Code generation has transformed the way programmers 
work.



Design
(What do we build?) 

Engineering
(How do we build it?) 



Two Software Design Processes

Feedforward Feedback



Understand the problem Solve the problem

Ideas

Person with 
a challenge

Product

Human-Centered Design: Two feedback loops

Observe

Hypothesize

Test



Feedback loops are essential to all systems

The human body Earth systems Training AI

Education Childhood Development



AI Code generation isn’t enough to 
create better software products…

We have to close feedback loops 
between design and engineering.



Dynex: Bridging Design and Code

Iterative Problem 
Specification (Design)

●

Modular Code Generation 
and Testing



LogoMotion induces feedback with:
1. Self Debugging
2. Design iteration w/
AI Code Editing Widgets

Testing: 
Self-Debugging

Design:
Code Editing 
Widgets

Code



DoubleAgents uses feedback for 
1) Simulating user testing
2) Policy (Design) Updates



Bridging Design and Code with Gen AI
Dynex 

○ Iterative Problem Specification 
○ Iterative Development 

Testing: 
User simulation 

Code
Design:
Policy 
updating

Testing: 
Self-Debugging

Design:
Code Editing 
Widgets

Code LogoMotion
○ Self-debugging loop
○ Iteration with AI Editing widgets

Double Agents 
○ Testing with user simulation 
○ Iterating on designs with AI 

suggestions

Design Code


