
Homework 4: JavaScript Widgets
Warm up: due Friday 2/11 @ 11:59pm on Courseworks
Main: due Tuesday 2/15 @ 11:59pm on Courseworks.

Warm-up:

What to submit:
A folder called warmup_UNI (put your UNI in the UNI placeholder) that contains files with the
following titles:

• dd_warmup.html
• dd_warmup.js
• dd_warmup.css (optional)

You may zip the warmup folder if you like.

Problems:

1. Write a short sentence describing your participation on 2/9. (unless instructed
otherwise by your section TA)

2. Create a simple drag and drop interface using the JQuery draggable and droppable
widgets.

a. There are two blue divs. One says “Non-PPC”, the other says “PPC”. You may
hard code these in HTML.

b. Under Non-PPC there are two divs with people’s names :“Phyllis” and “Angela.”
For this problem, you may hard code these in HTML. For Main Problem 2, you
will need to create these divs them dynamically in JavaScript.

c. When you hover over either of the name divs, the background color should turn
light yellow and the mouse cursor should turn into the “move” cursor

i. Move cursor looks like this:
d. Widget CSS customization 1: when you drag a name div, it should still be light

yellow and have a move cursor.
e. Widget CSS customization 2: When you drag a name div and drop it on the blue

PPC div, it should:
i. Console.log() the name of person. (We recommend storing the name in

HTML element using the data-* attributes. For example: <div data-
name=”Phyllis”>

ii. The div should stay put (it is successfully dropped).
f. When you drag a name div and drop it anywhere other than the blue PPC div it

should revert back to its location. Don’t code this yourself. Look for a property of
the draggable or droppable widget that will do this for you.

g. We highly recommend looking at the https://jqueryui.com/droppable/ examples
and documentation.

The site should be implemented in a folder called dd_warmup_UNI that has the following files:

§ One HTML file called dd_warmup.html
§ One JS file called dd_warmup.js
§ (Optional) a CSS file called dd_warmup.css

Here are JS + Bootstrap you will need for all the problems in this homework (main and warm
up)

<!-- JQuery -->
<script src="http://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="https://code.jquery.com/ui/1.12.0/jquery-ui.min.js"></script>
<link rel="stylesheet" href="http://code.jquery.com/ui/1.12.1/themes/base/jquery-ui.css">

<!-- bootstrap same as before -->

<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css">

Original state:

When the mouse is hovering on a name div

While dragging a name div

Main:

What to submit:

• A folder called log_sales_UNI (put your UNI in the UNI placeholder) that contains files
with the following titles:

o log_sales.html
o log_sales.js
o log_sales.css (optional)

• A folder called ppc_UNI (put your UNI in the UNI placeholder) that contains files with
the following titles:

o ppc.html
o ppc.js
o ppc.css (optional)

You may zip the warmup folder if you like

Problem 1.
Logging Paper Sales with an Autocomplete Widget.

You a building a website called Columbia Paper Infinity for the salespeople at Columbia Paper
to log their paper sales.

The interface to log sales should allow users to enter a sale, see all previously entered sales,
and delete sales. It will all be implemented in HTML, CSS, Bootstrap, JavaScript, and JQuery. It
will not have a back-end, so the results won’t actually save if you close the page and open it
again. Focus on the implementation of features, rather than design.

The requirements for the site are as follows:

1. Write a short sentence describing your participation on 2/14. (unless instructed
otherwise by your section TA)

2. The site should be implemented in a folder called log_sales_UNI that has the following
files:

§ One HTML file called log_sales.html
§ One JS file called log_sales.js
§ (Optional) a CSS file called log_sales.css

3. At the top of the page should be a large header that says “Columbia Paper Infinity”
4. The user must see two text boxes: one to enter the client to whom the paper was sold,

and another to enter the number of reams of paper.
The client text entry widget should have the word "client" as placeholder text.
The reams text entry widget should be short and have the word "# reams" as
placeholder text.

5. The client box must have JQuery autocomplete populated with the names of clients
from this file:

§ http://coms4170.cs.columbia.edu/2022-spring/hw/hw4/js/clients.js
§ Copy the data from this file into your own js file (log_sales.js)
§ Use the JQuery autocomplete feature. If conflicts with bootstrap, so you may

have to not to bootstrap for these text inputs (however, you will still be able to
use bootstrap for the other parts of the page.)

6. If the user enters a client name that is not in the autocomplete, add it so that it will be in
the autocomplete the next time they type the same name.

7. Beneath the client entry box, there must be a list of previously entered sales records.
The information in the records must align with the grid structure with the input boxes
above them. The sales records must start with this data:

§ http://coms4170.cs.columbia.edu/2022-spring/hw/hw4/js/sales.js
§ Copy the data from this file into your own js file (log_sales.js)
§ You may not change the data format.
§ No <table>’s.

8. When the user enters a new sale, a new record must show up as the first record in the
list, directly below the input boxes. It must include the salesperson’s name. Hard code

the name of the salesperson in JavaScript with a const variable. That will be the only
person logging sales in this assignment. This must be implemented in the Model +
View/Controller style demonstrated in class. This means that:

§ NOTE: When a change is made to the underlying data (the model), you do not
make changes to the UI (the view) directly. Instead, you first update the json
data (the model), then update the appearance (the view). This way the model
and the view are always in sync. The easiest way to update he view from the
model is to remove the entire list from the UI and then regenerate the entire list
(with the updates) from the updated data. You could do clever things with
adding and deleting elements, but removing and regenerating is actually an easy
and great way to do this.

9. For each sales record, there must be a delete button which will remove it from the list of
sales records. This must be implemented in the Model + View/Controller style: first
delete the data from the json data (the model) then regenerate the view from the
updates json data. Do not just delete the elements of the UI.

10. After the new entry is added, the interface must go back to a state where the user can
immediately start typing a new sale. This means:

§ The text boxes must clear
§ The cursor must go to the client input box.

11. There must be two ways to enter a sales record:
1. Pressing a "submit" button near the text input fields
2. Pressing "enter" in the "# reams" text input

12. If either the client field or the reams field is empty when the user tries to submit, three
things must happen:
1. The data must not submit
2. The webpage must throw produce a warning in the UI to identify each error next to
the field where it should be corrected. Do not use an alert() box.
3. The webpage must move the cursor to the first field that was empty (so that the

user can easily type there)
4. Once the data is correctly submitted, the warnings should disappear.

13. If the “# reams” is not a number (but is non-empty), the webpage must warn the user
that the number of reams is not a number in a manner consistent with the warning
produced in the previous problem. The data must not submit, and the cursor should go
back to the reams field. Do not clear the data in either field.

Here is a screenshot of my design.
You do not have to copy it.
It should only serve as a guide to what we expect.

Problem 2:

Editing the Party Planning Committee with Drag & Drop
You a building a website called Party Planning Committee for the employee at Columbia Paper
to keep track of who is on the party planning committee by moving people on and off with a
drag and drop interface. It will all be implemented in HTML, CSS, Bootstrap, JavaScript, and
JQuery. It will not have a back-end, so the results won’t actually save if you close the page and
open it again. Focus on the implementation of features, rather than graphic design. Graphic
design should be minimal.

The requirements for the site are as follows:

1. The site should be implemented as
• One HTML file called ppc.html
• One JS file called ppc.js
• (Optional) one CSS file called ppc.css

2. At the top of the page should be a large header that says “Party Planning Committee”
3. The PPC site needs to display two lists:

• People not on the PPC:
1. In its default state it should show all the employees.
2. You can copy that from here:
3. http://coms4170.cs.columbia.edu/2022-spring/hw/hw4/js/employees.js

• People on the PPC.
1. In its default state, the party planning committee is empty.

4. Each list must have a div at the top of the list with the label "Non-PPC" or "PPC". This
label should be large enough to serve as a drop target. They should be big enough so
that it’s not painful to try to drop things there.

5. Using JQuery Draggable and Droppable events, implement an interface where the user
can drag names from the Non-PPC list to the head of the of the PPC list, and when they
drop it, the name will get added to the end of the PPC list. The reverse must also be
true: names from the PPC list can be dragged to the header of the non-PPC list to move
them off the PPC.
This must be implemented in the Model + View/Controller style demonstrated in class
and described in the note in the previous problem.

6. To cue that an element is draggable, implement the UI such that when a draggable
element is hovered over, its background turns light yellow, and the cursor changes to
the "move" cursor

7. While the item is being dragged, the background should also be light yellow, and the
cursor should still be the "move" cursor.

8. While the item is being dragged, it should look like it is on top of all the other elements
on the page, so it is fully visible.

9. While the item is being dragged, the drop target should turn a darker shade of whatever
color you made it.

10. When the item is dragged over the drop target, the drop target should turn an even
darker shade.

11. If an item is dropped anywhere other than an appropriate drop target for that item, it
should revert back to the place where the user started dragging it.

Here is a screenshot of my design.
You do not have to copy it.
It should only serve as a guide to what we expect.

